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Abstract
A modified Feynman construction with a zero-frequency central peak is used to
model the dynamical structure functions for layered charged particle systems.
This construction recognizes the affinity between layered and multicomponent
systems. It also guarantees the simultaneous satisfaction of all three frequency-
moment sum rules. The frequencies and spectral weights of the long-
wavelength collective excitations and the strength of the diffusive central peak
are calculated for arbitrary degeneracy.

PACS numbers: 52.27.Gr, 73.21.−b, 05.20.−y, 05.30.−d, 73.22.Lp

1. Introduction

Over the past decade, interest in the static and dynamic properties of layered charged particle
systems in the strongly coupled Coulomb liquid and solid phases has been stimulated by
experimental activities in the areas of strongly coupled plasma physics and condensed matter
plasmas. In strongly coupled plasma physics, there are the seminal NIST/Boulder experiments
[1] in which laser-cooled classical ions in a cryogenic trap spontaneously organize themselves
into layered structures in highly correlated liquid and solid phases. In condensed matter
plasmas, advances in semiconductor nanotechnology have made it possible to routinely
fabricate multiple quantum well structures of parallel electronic layers in a strongly correlated
liquid phase [2].

On the theoretical/computational side, in the case of the classical bilayer, the equilibrium
structure of the correlation-dominated Coulomb solid [3] and liquid [4] phases is now well
understood. In the quantum domain, information on the intralayer and interlayer static structure
functions and pair correlation functions has recently become available for rs � 5 [5]. For
both bilayers and superlattices, the spectrum of collective excitations in the random-phase-
approximation (RPA) has been known for a long time [6, 7], but the analysis of the effect
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of particle correlations beyond the RPA, both in the weak coupling [5] and strong coupling
[8, 9] regimes is more recent. A remarkable effect that emerges in the latter regime is the
development of a long-wavelength frequency gap in the out-of-phase collective modes [8, 9].
Recent molecular dynamics simulations of the classical bilayer by Donko et al [10] confirm
the predicted collective mode dispersion including the frequency gap.

The in-phase and out-of-phase dynamical structure functions should, in principle, provide
all the information on the collective excitations and static structure functions in charged particle
multilayers over the entire classical to quantum domain. In this paper, we review and extend a
novel approach to the construction of the dynamical structure functions that makes it possible
to explicitly track its evolution with temperature all the way down to the T = 0 quantum limit.
Central to this approach is the introduction of a zero-frequency central diffusive peak so that
all three principal frequency-moment sum rules can be satisfied.

The paper has three main objectives: first we will formulate compressibility sum rules
for charged particle bilayers and superlattices over the entire classical to quantum domain.
Second, we will use the compressibility rules and the already established classical/quantum
third-frequency-moment and f-sum rules to analyse the long-wavelength behaviour of the
dynamical structure functions. Finally, by way of the newly constructed dynamical structure
functions, we will calculate both the oscillation frequencies and spectral weights of the
collective modes along with the strength of the diffusive central peak. Some of the results of
the bilayer calculations appearing in this paper are reported by the authors elsewhere [11].

The bilayer and superlattice calculations are displayed side-by-side in this work in order
to highlight the similarities and differences between the two configurations.

The paper proceeds according to the following plan. In section 2, we introduce the
relevant response functions. Perfect screening and compressibility sum rules are formulated
in section 3. In section 4, we postulate Feynman-like representations for the dynamical
structure functions. Conclusions are drawn in section 5.

2. Response functions

We consider a charged particle multilayer described by a model that consists of a stack of N
equal-density two-dimensional (2D) charged particle layers embedded in a dielectric substrate;
d is the distance between adjacent layers. Each layer contains a 2D electron fluid (Z = −1)

neutralized by a rigid uniform positive background. No restriction is placed on the temperature
that can range from the T = 0 degenerate limit to the T → ∞ classical limit. No tunnelling is
considered. We will address the two configurations that have attracted the most experimental
and theoretical interest, namely the charged particle bilayer (N = 2) and the superlattice
(N → ∞).

We define �̃ = [e2/(aεrE0)][1 − exp(−βE0)], which turns out to be the measure of
the coupling strength for arbitrary degeneracy; E0 = πn h̄2/m is the zero-temperature Fermi
energy of the non-interacting 2D electron gas, a = 1/

√
πn is the 2D Wigner–Seitz radius and

εr is the dielectric constant of the substrate. Note that for T → ∞, �̃ = � = βe2/aεr , the
familiar classical coupling constant, and for T = 0, �̃ = rs = a/aB ; aB = εrh̄

2/(me2) is the
Bohr radius.

The formalism for the description of the equal-density bilayer is identical to that of a two-
component system: the two layers can be regarded as two ‘species’ (1 and 2), with interaction
matrix

φ(k) = 2πe2

εrk

[
1 e−kd

e−kd 1

]
.
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Then with the aid of φ(k) and the screened (total) density response matrix, χ̄(k), the dielectric
matrix ε(k), its inverse η(k) and the full (external) density response matrix χ(k) can be
constructed from

ε(k) = I − φ(k)χ̄(k) χ(k) = χ̄(k)η(k) η(k) = I + φ(k)χ(k) (1)

where I is the (2 × 2) identity matrix.
In the case of the infinite superlattice, the periodic structure of the system allows

one to replace the layer-space matrix formalism with a scalar one by introducing a
Fourier transformation along the superlattice axis, e.g., χ̄(k, q) = ∑

m χ̄m0(k) exp[−iqzm];
zm = md(m = 0,±1,±2, . . .) locates the mth layer above or below the m = 0 reference
layer. We introduce the interaction potential φ(k, q) = [2πe2/εrk]F(k, q), where F(k, q) =
sinh kd

/
(cosh kd − cos qd) is the superlattice form factor [6]. The superlattice counterparts

of equations (1) are

ε(k, q) = 1 − φ(k, q)χ̄(k, q) χ(k, q) = χ̄ (k, q)η(k, q)
(2)

η(k, q) = 1 + φ(k, q)χ(k, q).

3. Perfect screening and compressibility rules

The perfect screening sum rule for the bilayer follows from the fact that a charged impurity
placed in one of the layers (say layer 1) is screened so that by the combined effect of all the
layers, equal but negative charge is generated to surround it. The polarization charges,ρ1 and ρ2

surrounding the impurity with charge Ze = +1 in layer 1 are, respectively, ρ1(k) = η11(k)−1
and ρ2(k) = η12(k). The total charges in the layers are ρ1(k = 0) + 1 and ρ2(k = 0). Thus
the perfect screening requirement [12]

η11(k = 0) + η12(k = 0) = 0. (3)

η11(k = 0) and η12(k = 0) can assume any positive or negative values compatible with (3).
For the infinite superlattice, a similar such argument leads to

η(k = 0, q = 0) =
∑
m

ηm0(k = 0) = 0. (4)

Perfect screening sum rules (3) and (4) are, of course, statistics independent.
The Stillinger–Lovett (SL) condition that relates directly to the equilibrium pair correlation

function imposes quite similar statistics-independent requirements on the static structure
functions:

S11(k = 0) + S12(k = 0) = 0 bilayer (5)

S(k = 0, q = 0) =
∑
m

Sm0(k = 0) = 0 superlattice. (6)

While the derivation of compressibility rules based on the balancing of a screened
perturbing field by pressure gradients in the respective layers is straightforward, its formulation
in a manner that explicitly encompasses both the classical and quantum domains is possible
only for the 2D non-interacting electron gas [13]. Here the k = 0 value of the static Lindhard
function and inverse isothermal compressibility are given by

χ0 = χ̄0(k = 0) = − n

E0
[1 − exp(−βE0)] (7)

[
∂P0

∂n

]
T

= E0

1 − exp(−βE0)
. (8)

P0 is the pressure of the non-interacting 2D electron gas.
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Addressing first the bilayer, the resulting compressibility rule is expressed in terms of the
screened (total) density response matrix χ̄ as

χ̄(k = 0) = χ0L−1 (9)

L = (Lij ) =
[
L N

N L

]
Lij = [∂Pi/∂nj ]T

[∂P0/∂n]T
. (10)

L = L11 = L22 and N = L12 = L21 are the direct- and trans-inverse compressibility
coefficients, respectively. The superlattice counterparts of (9) and (10) are

χ̄(k = 0, q) = χ0

L(q)
(11)

L(q) = 1

[∂P0/∂n]T

∑
m

[
∂Pm

∂n0

]
T

exp(−iqzm). (12)

For the bilayer, the information available in equation (9) is sufficient to generate the
elements of the dielectric matrix to O(k̄), since χ̄ij (k) is expected to be an analytic function
of k to start with an O(k̄2) term only. With this proviso, we obtain

ε11(k → 0) = 2�̃

k̄

1

L + N
+ 1 + 2�̃d̄

N

L2 − N2
+ O(k̄)

ε12(k → 0) = 2�̃

k̄

1

L + N
− 2�̃d̄

L

L2 − N2
+ O(k̄).

(13)

We note that ε(k) and all other physical quantities can be diagonalized by rotating into the space
spanned by the in-phase (+) and out-of-phase (−) directions: the resulting matrix elements
are ε±(k) = ε11(k) ± ε12(k), χ±(k) = χ11(k) ± χ12(k), etc.

The elements of the inverse dielectric matrix follow from equation (13):

η11(k = 0) = −η12(k = 0) = 1

2

L − N

L − N + 2�̃d̄
(14)

[12, 14] in agreement with the perfect screening sum rule (3). With increasing layer separation,
N should rapidly vanish and L should approach a value L2D appropriate for the isolated 2D
layer. For the classical bilayer, L − N = 1 at d = 0 since, in this limit, N exactly cancels the
correlational contribution to L.

In the case of the superlattice, the lowest-order correction to equation (11) expression
for χ̄(k̄ = 0, q) is at most an O(k̄2) term. With this stipulation, the small-k expansion of
equation (2) results in the ‘in-phase’ (q = 0) and ‘out-of-phase’ (q �= 0) dielectric response
functions

ε(k̄ → 0, q = 0) = 1

L(q = 0)

[
4�̃

k̄2d̄
+ L(q = 0) +

�̃d̄

3

]
+ O(k̄2) (15)

ε(k̄ → 0, q �= 0) = 1 +
2�̃d̄

L(q)(1 − cos qd)
+ O(k̄2). (16)

Equation (15) is in agreement with the perfect screening sum rule (4). We note the manifest
similarity between equations (15) and (16) and their bilayer counterparts ε±(k → 0) formed
from equations (13).
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We turn now to the derivation of the compressibility rules for the full density response
functions. For the bilayer, one finds

χ±(k → 0) = χ0X±(k → 0) (17)

X+(k → 0) = k̄

4�̃
− (L + N − 2�̃d̄)

[
k̄

4�̃

]2

+ O(k̄3) (18)

X−(k → 0) = 1

L − N + 2�̃d̄
+

4�̃2d̄2

[L − N + 2�̃d̄]2

k̄

4�̃
+ O(k̄2). (19)

The corresponding in-phase (q = 0) and out-of-phase (q �= 0) compressibility rules for the
superlattice are

χ(k → 0, q) = χ0X(k → 0, q) (20)

X(k → 0, q = 0) = k̄2d̄

4�̃
−

[
L(0) +

�̃d̄

3

] [
k̄2d̄

4�̃

]2

(21)

X(k → 0, q �= 0) = 1 − cos qd

L(q)(1 − cos qd) + 2�̃d̄
+ O(k̄2). (22)

As expected, the classical limit of the in-phase bilayer expression (18) closely resembles
that of the isolated 2D electron plasma layer of density 2n when (18) is recast in terms
of the dimensionless wavenumber k2D = k/κ2D = k̄/(2�); κ2D = (2πne2β)/εr is the 2D
Debye wavenumber. By the same token, the classical limit of the in-phase superlattice
expression (21) closely resembles that of the 3D one-component plasma (OCP) with density
n/d when (21) is recast in terms of dimensionless wavenumber: k2

3D = k2
/
κ2

3D = (k̄2d̄)/(4�);

κ3D =
√

(4πne2β)/(εrd) is the 3D Debye wavenumber.

4. Structure functions and frequency-moment sum rules

We turn now to the analysis of the in-phase and out-of-phase dynamical structure functions. It
is known that in the long-wavelength (k → 0) domain of interest, the Feynman representation
of the dynamical structure function in terms of δ-functions at the collective mode frequencies
provides in most cases a reasonable physical picture. Here we extend this representation to
include a ω = 0 diffusive peak. Accordingly,

S±(k → 0, ω) = π {2p±(k)δ(ω) + q±(k)[δ(ω − ω±(k)) + δ(ω + ω±(k))]} (23)

for the bilayer (see also [15]) and

S(k → 0, q, ω) = π {2P(k, q)δ(ω) + Q(k, q)[δ(ω − ω(k, q)) + δ(ω + ω(k, q))]} (24)

for the superlattice; q±(k), Q(k, q) are the weight factors of the collective peaks and ω±(k),
ω(k, q) are the collective mode frequencies; p±(q), P(k, q) are the weight factors for the
central peak. While the inclusion of the central peak in the present context is novel, it has
its antecedents in the literature. In his comment the reference [16] analysis of the dispersion
relation for classical monatomic liquids and amorphous solids, Knipp [17] convincingly
argues that the central ‘Rayleigh’ peak must be included to take account of thermal diffusion.
Indeed, what makes Knipp’s argument all the more compelling is the fact that the three-peak
representation necessarily implements all three fundamental frequency-moment sum rules
to uniquely specify the spectral weights p±(k), q±(k) of the central and collective peaks,



5870 K I Golden and G J Kalman

respectively, and the oscillation frequencies ω±(k) of the collective modes. By contrast, in the
more traditional Feynman-like representation for the OCP featuring only the two collective
peaks, one of the three sum rules must be ignored as though it simply never existed.

In this work, the introduction of the central peak is further motivated by the observation that
in multicomponent systems, hydrodynamic diffusion dominates the low-frequency behaviour
and its representation in S(k, ω) is indispensable in view of the fact that S(k = 0) �= 0.
Now, charged particle bilayers and superlattices are akin to multicomponent systems; thus,
their central peaks are at least on a par with the resonances representing the out-of-phase
longitudinal collective modes. Note that the representation of the central peak through a δ-
function should not be problematic: only the integral over the peak matters in the forthcoming
analysis. On the other hand, one should realize that the δ-function representation at the
collective mode frequencies implies that the modes are undamped which, although a limitation,
is still an acceptable approximation: see discussion below equation (46).

The fundamental sum rules for the bilayer and superlattice are customarily stated in terms
of the respective frequency moments

〈ωs〉±(k) = (1/π)

∫ ∞

−∞
dωωs Imχ±(k, ω) 〈ωs〉(k, q) = (1/π)

∫ ∞

−∞
dω ωs Im χ(k, q, ω).

Noting that the s = 1 f-sum rule for 〈ω〉±(k) = 〈ω〉(k, q) = −nk̄2/(ma2) is the same for
both systems, the remaining compressibility (s = −1) and third-frequency-moment [18]
(s = 3) sum rules that the in-phase and out-of-phase dynamical structure functions (23) and
(24) are required to satisfy are

〈ω−1〉±(k̄ → 0) = χ±(k̄ → 0) bilayer (25)

〈ω−1〉(k → 0, q) = χ(k → 0, q) superlattice (26)

〈ω3〉±(k) = − nk̄2

ma2

{
ω2

±0(k) +
3〈Ekin〉
ma2

k̄2 + D±(k) +

[
h̄ k̄2

2ma2

]2
}

bilayer (27)

〈ω3〉(k, q) = − nk̄2

ma2

{
ω2

0(k, q) +
3〈Ekin〉
ma2

k̄2 + D(k, q) +

[
h̄k̄2

2ma2

]2
}

superlattice.

(28)

Here, ω2
±0(k) = nk̄2

ma2 φ±(k) = ω2
2D(k) [1 ± exp(−kd)] and ω2

0(k, q) = nk̄2

ma2 φ(k, q) are the

respective bilayer and superlattice mean field frequencies; ω2D =
√

(2πne2k)/(εrm) is
the plasma frequency of a single isolated layer; 〈Ekin〉 is the average kinetic energy per
particle for the interacting system. The D-functions take account of the exchange-correlation
contributions to the third-frequency-moment sum rule coefficients through the Sij (k) static
structure functions. For the bilayer, to lowest order in k̄,

D+(k → 0) = −ω2
0γ+k̄

2 (29)

D−(k → 0) = ω2
0g

2 − ω2
0γ−k̄2 (30)

g =
√

1

2

∣∣∣∣
∫ ∞

0
dx x2S12(x) exp(−xd̄)

∣∣∣∣ (31)

γ± = − 5

32

∫ ∞

0
dx[S11(x) − 1] ∓ 5

32

∫
dx

[
1 − 11

5
xd̄ +

3

5
x2d̄2

]
S12(x) exp(−xd̄). (32)
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ω0 =
√

2e2/(εrma3) is a nominal 2D plasma frequency, x = k′a, and d̄ = d/a. For the
superlattice, one similarly finds

D(k → 0, q = 0) = −ω2
0γ (q = 0)k̄2 (33)

D(k → 0, q �= 0) = ω2
0[g(q)]2 − ω2

0γ (q)k̄2 (34)

g(q) =
√√√√1

2

∣∣∣∣∣
∞∑

m=1

[1 − cos(qmd)]
∫ ∞

0
dx x2Sm0(x) exp(−xmd)

∣∣∣∣∣ (35)

γ (q) = − 5

32

∫ ∞

0
dx[S00(x) − 1] − 5

32

∫ ∞

0
dx

∑
m�=0

[
1 − 11

5
x |m| d̄ +

3

5
x2 |m|2 d̄2

]

× cos(qmd)Sm0(x) exp(−x|m|d̄ ). (36)

The combination of equations (25)–(36) and the fluctuation-dissipation theorems

Im χ±(k, ω) = −n

h̄
tanh

(
βh̄ω

2

)
S±(k, ω) bilayer (37)

Im χ(k, q, ω) = −n

h̄
tanh

(
βh̄ω

2

)
S(k, q, ω) superlattice (38)

yields the weight factors

p±(k → 0) = 1 − exp(−βE0)

βE0
X±(k) − k̄2

βma2ω±(k)
(39)

q±(k → 0) = h̄k̄2

2ma2ω±(k) tanh [βh̄ω±(k)/2]
bilayer (40)

P(k → 0, q) = 1 − exp(−βE0)

βE0
X(k, q) − k̄2

βma2ω2(k, q)
(41)

Q(k̄ → 0, q) = h̄k̄2

2ma2ω(k, q) tanh [βh̄ω(k, q)/2]
superlattice (42)

and long-wavelength in-phase and out-of-phase plasmon oscillation frequencies

ω2
+(k → 0) = 2ω2

0 k̄

[
1 − k̄d̄

2

]
+

3〈Ekin〉
ma2

k̄2 − ω2
0γ+k̄

2 (43)

ω2
−(k → 0) = ω2

−(k = 0) + ω2
0 k̄

2d̄

[
1 − k̄d̄

2

]
+

3〈Ekin〉
ma2

k̄2 − ω2
0γ−k̄2 bilayer (44)

ω2(k → 0, q = 0) = ω2
3D

[
1 +

k̄2d̄2

12

]
+

3〈Ekin〉
ma2

k̄2 − ω2
0γ (q = 0)k̄2 (45)

ω2(k → 0, q �= 0) = ω2(k = 0, q �= 0) +
ω2

0 d̄

1 − cos qd
k̄2 +

3〈Ekin〉
ma2

k̄2 − ω2
0γ (q)k̄2

superlattice. (46)

Note the 2D OCP-like character of the in-phase plasmon frequency (43) and the 3D
OCP-like character of its superlattice counterpart equation (45) (ω3D =

√
4πne2/(εrmd)
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is the bulk plasma frequency); the exchange-correlation γ coefficients act to modify the
slopes of the dispersion curves in the usual manner. Most importantly, we observe that
the out-of-phase plasmon frequencies (44), (46) develop a finite-frequency ‘energy gap’
at k = 0 characteristic of optic mode behaviour, that is, ω−(k = 0) = ω0g �= 0 for
the bilayer and ω(k = 0, q �= 0) = ω0g(q) �= 0 for the superlattice. This is in marked
contrast to the customary acoustic dispersion predicted by the RPA (formally recovered
by setting D− = 0 in (27) and D(q �= 0) = 0 in (28)). The energy gap was predicted
some time ago first for strongly coupled classical superlattices [8] and later for classical
bilayers [9] using the quasilocalized charge approximation (QLCA) or a third-frequency-
moment sum rule equivalent of the QLCA. Recent molecular dynamics simulations have
now confirmed its existence in classical bilayers [10]. The results of the present analysis go
much further in that they predict that the finite-frequency energy gap persists for arbitrary
coupling strengths and over the entire classical to quantum domain all the way down to zero
temperature.

The representations (23) and (24) for the dynamical structure functions, of course,
preclude the possibility of describing the damping of the collective modes. Some qualitative
assessment, however, can be made and here we confine our attention to the out-of-
phase plasmon modes only. The two major damping mechanisms to be considered
are Landau damping (single-particle excitations) and collisional damping (multiple pair
excitations). According to the QLCA analysis of [9(a)], as long as the layer separation
is not too large (d < 1.5a), for the small-k values of this work the out-of-phase plasmon
is well outside the pair continuum and is thus immune to Landau damping. In the
strong coupling regime, collisional damping is also operative; however, it becomes
prominent only at higher k values well beyond the long-wavelength domain of the present
theory.

Finally, the knowledge of the in-phase and out-of-phase dynamical structure functions
makes it possible to calculate the corresponding static structure functions via S±(k → 0) =
p±(k → 0) + q±(k → 0) and S(k → 0, q) = P(k → 0, q) + Q(k → 0, q). Although it
is not manifest from equations (39) and (41), the amplitude of the central peak p±(k → 0),
P(k → 0, q) is always positive, as it should be (see table 1), further attesting to the soundness
of representations (23) and (24) at long wavelengths.

The results of the analysis of the in-phase and out-of-phase dynamical structure functions
in the classical and quantum domains are summarized in table 1. The following summarizes
the salient features of the table.

• The fact that the central peak is related to thermal diffusion is clearly demonstrated by
its strong temperature dependence: while in the classical domain (high temperatures) the
central peak saturates at a value dictated by the compressibility sum rule, in the quantum
domain (low temperatures), it is proportional to T both for the in-phase and out-of-phase
structure functions and vanishes at T = 0.

• The strength of the out-of-phase central peak always dominates the strength of the in-phase
central peak. This is especially pronounced in the case of the superlattice.

• At low temperatures, the in-phase and out-of-phase static structure functions are
dominated by their collective peaks. In contrast, at high temperatures this dominance
prevails only for S+(k → 0) and S(k → 0, q = 0), whereas for S−(k → 0) and
S(k → 0, q �= 0), the main contribution shifts to the central peak.

• In the classical limit, the table 1 formulae for the bilayer and superlattice static structure
functions are exact [14,19] in that they can be established directly from the compressibility
rule and the static fluctuation-dissipation theorem without the need to invoke the Feynman-
like representations (22) and (23).
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Table 1. The table shows the leading terms (in powers of k) for the in-phase and out-of-phase
static structure functions and the strengths of the central and collective peaks of the corresponding
dynamical structure functions; k̄ = ka, k2D = k/κ2D and k3D = k/κ3D, here κ2D = 2πne2β/εr

and κ3D =
√

4πne2β/(εrd) are 2D and 3D Debye wavenumbers.

Classical bilayer Classical superlattice

In-phase

p+(k → 0) = [3 − (L + N) − 2�γ+]
k2

2D
4 P (k → 0, q = 0) = [3 − L(0) − 2�γ (0)]k4

3D

q+(k → 0) = k2D
2 − [3 − 2�γ+ − κ2Dd]

k2
2D
4 Q(k → 0, q = 0) = k2

3D −
[
3 − 2�γ (0) +

κ2
3Dd2

12

]
k4

3D

S+(k → 0) = k2D
2 − [L + N − κ2Dd]

k2
2D
4 S(k → 0, q = 0) = k2

3D −
[
L(0) +

κ2
3Dd2

12

]
k4

3D

Out-of-phase optical

p−(k → 0) = 1
L−N+2�d̄

+ �d̄2 k̄

[L−N+2�d̄]2 P (k → 0, q �= 0) = 1−cos qd

L(q)[1−cos qd]+2�d̄
+ O(k̄2)

q−(k → 0) = k̄2

2�ḡ2 + O(k̄4) Q(k → 0, q �= 0) = k̄2

2�[g(q)]2 + O(k̄4)

S−(k → 0) = 1
L−N+2�d̄

+ �d̄2 k̄

[L−N+2�d̄]2 S(k → 0, q �= 0) = 1−cos qd

L(q)[1−cos qd]+2�d̄
+ O(k̄2)

Zero-temperature bilayer Zero-temperature superlattice

In-phase
p+(k → 0) = 0 P (k → 0, q = 0) = 0

q+(k → 0) = k̄3/2

4
√

rs
+ O

(
k̄5/2

)
Q(k → 0, q = 0) = k̄2 d̄

4
√

rs
+ O(k̄4)

S+(k → 0) = k̄3/2

4
√

rs
+ O(k̄5/2) S(k → 0, q = 0) = k̄2 d̄

4
√

rs
+ O(k̄4)

Out-of-phase optical
p−(k → 0) = 0 P (k → 0, q �= 0) = 0

q−(k → 0) = k̄2

4g
√

rs
+ O(k̄4) Q(k → 0, q �= 0) = k̄2

4g(q)
√

rs
+ O(k̄4)

S−(k → 0) = k̄2

4g
√

rs
+ O(k̄4) S(k → 0, q �= 0) = k̄2

4g(q)
√

rs
+ O(k̄4)

5. Summary

In this paper, we analyse the long-wavelength behaviour of the dynamical structure functions
for bilayers and superlattices. The analysis is based on a Feynman-like representation featuring
a zero-frequency peak in addition to the two collective peaks. Inclusion of the central peak, on
the one hand, recognizes the fact that layered systems are akin to multicomponent plasmas. On
the other hand, it guarantees satisfaction of all three principal frequency-momentsum rules. Of
particular significance are the compressibility sum rules for bilayers and superlattices and their
similarities and differences with each other and with the OCP in two and three dimensions.

The collective mode frequencies, including the interlayer correlation-induced energy gap
in the out-of-phase spectrum, that result from the dynamical structure functions persist over
the entire temperature domain down to zero temperature. The recent molecular dynamics
simulations of Donko et al [10] confirm the existence of the energy gap in the classical
regime. In the quantum domain as far as experimental verification is concerned, the existing
observations on semiconductor bilayers at small-rs and high-k̄ values can be reconciled with
the small energy gap that would exist in this parameter range [20]. The ultimate verification
of the existence of the energy gap at zero temperature awaits Raman scattering experiments
on high-rs multiple quantum well structures.
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Appendix

In this section, we discuss the interpretation of the out-of-phase finite-frequency energy gap
in the d = 0 limit. It is instructive to parallel the situation with the behaviour of the phonon
spectrum calculated in [3] for the classical bilayer Wigner crystal. The spectrum exhibits two
k = 0 energy gaps—one for the longitudinal mode and one for the transverse mode—that
persist when the two layers are merged into one. In the case of the strongly coupled bilayer
liquid where the isotropy of the system dictates that the two gap frequencies assume the same
value, our calculation based on the gap coefficient (31) indicates that the finite-frequency gap
persists as well in the d = 0 limit. In this limit, the pair correlation functions h11(r) and h12(r)

become identical, whence

ω−(k = 0, d = 0) = ω0

√
1

2

∣∣∣∣
∫ ∞

0
dx x2 [S11(x) − 1]

∣∣∣∣. (A1)

Equation (A1) is identical to the ω(k → ∞) Einstein frequency for the isolated 2D layer having
density n [9(a), 9(d), 21]. However, the question then arises: how can (A1) be reconciled
with the fact that in the strong coupling regime, the 2D electron liquid should feature only the
two in-phase longitudinal plasmon (P) and transverse shear (S) mode frequencies, with both
having the same ω(k = 0) = 0 value?

To address this question it is useful to examine how this scenario plays out in the case
of the classical zero-temperature bilayer crystal [3]. One first has to realize that after the two
layers merge, a k = 0 out-of-phase phonon excitation in the bilayer does not become a k = 0
phonon in the resulting isolated 2D crystal. This is because in the staggered rectangular crystal
structure prevailing at small layer separations [3], particles in the two layers occupy sites that
become lattice points along alternating rows of the 2D hexagonal crystal that results when the
two layers coalesce into one. Thus when the k = 0 P and S phonons are excited, the two
layers develop two uniform, but different distributions of particle displacements that emerge
as a single periodic (non-uniform) distribution in the combined 2D layer. With reference to
the bilayer phonon dispersion curves displayed in [3] and to the 2D phonon dispersion curves
of [22], one can then identify the k = 0 P and S optic frequencies at d = 0 with the same
frequencies in the isolated 2D layer at k = 2π/(

√
3a0) = 1.905/a. This is precisely the

X-point midway between two vertices on the boundary of the hexagonal Brillouin zone (see
[22], figure 1). Thus the ‘persistence’ of the k = 0 bilayer energy gap in the solid phase in
the d → 0 limit (as actually displayed in [3], figure 3(a)), in fact, can be well understood as a
conversion into a k �= 0 2D excitation.

In the liquid phase of the bilayer, the situation is somewhat different. The source of
the difference lies in the substitutional disorder [12], an inevitable consequence of the finite
temperature. As a result, when the two layers merge, h11(r) = h12(r), and the positions
of the particles originating from layer 2 are no longer distinguishable from those in layer 1.
Thus, in contrast to what happens in the classical zero-temperature bilayer crystal, the relative
out-of-phase motion of the particles belonging to the two layers does not translate itself into
a propagating 2D mode. What happens instead is rather similar to the k = 0 behaviour of
an optic mode of a two-component system with two out-of-phase particles oscillating in a
unit cell. Such an oscillation, not being part of the normal mode structure of the 2D OCP,
must be regarded as being generated by the specific initial conditions that correspond to the
merger of the two layers. In any case, one would expect that in the liquid phase, ‘inter-species’
diffusion would damp out these oscillations quickly. This is of course not apparent within
the formalism of this work where damping is not properly accounted for. Thus the frequency
of these oscillations as predicted by (A1) is of academic interest only. Nevertheless, the gap



Dynamical structure functions for charged particle bilayers and superlattices 5875

coefficient (31) and its offspring equation (A1) can be understood by realizing that at k = 0,
each layer oscillates rigidly and the relative equilibrium positions of the particles within each
layer remain unaffected. Thus, forces acting on any singled out particle in one layer originate
from the frozen equilibrium positions of the particles in the other layer; this is the condition
for the excitation of the Einstein frequency, as given by (A1).
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